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Nonlinear viscosity derived by means of Grad’s moment method
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In this paper we examine the stress tensor component evolution equations recently derived by Uribe
and Garcia-Colin[Phys. Rev. E60, 4052 (1999] for unidirectional flow at uniform temperature under
the assumption/approximation of vanishing transversal velocity gradients. By removing this assumption/
approximation we derive the stress tensor evolution equation from the Boltzmann equation within the frame-
work of the Grad moment expansion for the case of uniform temperdthieesame condition as thejrs
Specializing the evolution equation to the case of steady unidirectional flow in a square channel, we obtain a
set of steady state evolution equations for the components of the stress tensor. Because the transversal velocity
gradients are not assumed to vanish in this paper in contrast to their paper, the present result is more general
than theirs. Its special case corresponding to the one-dimensional flow considered by Uribe and Garcia-Colin
is at variance with theirs because of a missing term in their stress evolution equationxXgrabmponent. The
nonlinear viscosity formulas are also different. A general remark is given with regard to the relation of
dimensionalities of hydrodynamic equations and the kinetic equation underlying the former. They are not
necessarily the same.
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[. INTRODUCTION be a unidirectional flow in a square channel, even though the
calculation can be performed in general context and more
In a recent papefl] [Phys. Rev. E60, 4052 (1999], general results can be thereby obtained for the stress tensor
henceforth referred to as Rdfl] in this paper, Uribe and evolution equation with no more theoretical complication
Garcia-Colin calculate nonlinear viscosity formulas of a di-than what is already incurred in their paper. In this paper,
lute monatomic gas that undergoes a unidirectional flow. Thevhich is specifically concerned with the stress evolution
kinetic equation used is the Boltzmann equation and the disequation in Ref[1], we derive, within the framework of
tribution function obeying the kinetic equation is assumed toGrad’s 13-moment expansion, the stress tensor evolution
have cylindrical symmetry. The unidirectional flow is paral- equation for a unidirectional channel flow without the as-
lel to thex axis of the coordinate system. The assumed cysumption on the vanishing transverse velocity gradients
lindrical symmetry, therefore, makes the distribution functionmade in Ref[1]. The stress tensor evolution equation ob-
symmetric with respect to thg and z directions. Further- tained below is, therefore, more general than theirs, and we
more, the temperature is assumed to be uniform so that thereake some deductions for nonlinear viscosities on the basis
is no heat flow. This kind of a flow problem has been studiedof the stress tensor evolution equation derived and compare
in the past in the dilute gas kinetic theory within the frame-the results with those in Reff1].
work of the Grad moment methd@] and also in the context As is reasonably well understood in the literat{i8g6,7]
of generalized hydrodynamid8] for which the dissipation by now, macroscopic flow problems should be thermody-
terms have been in essence calculated to an infinite order mamically consistent, that is, they have to conform to the
series of the Knudsen number by means of a cumulant exequirements of the laws of thermodynamics. Unfortunately,
pansion. This method for the dissipation terms ensures th&rad’'s moment expansion method is not thermodynamically
nonlinear constitutive equations developed to be highly noneonsistent as was shown in the literat(id, unless some
linear yet still thermodynamically consistent. In the case ofapproximations are made to the moment evolution equations
Ref. [1] the Grad moment method is implemented to theobtained thereby. For example, if a perturbation solution
second order with regard to the stress tensor for the dissipanethod is applied to the moment evolution equations of
tion term, which is, at most, of second order in fluxes in theGrad, the thermodynamically consistent Navier-Stokes-
case of the Boltzmann equation. This feature, perhaps, dig-ourier theory is recovered at the first order of approxima-
tinguishes it from other works using the conventional Gradtion, as is the case for the first-order Chapman-Enskog
moment method for the problem or a moment method for thesolution. At the same order of approximation the local equi-
Maxwell model[4] or a variation5] of the moment method. librium Gibbs relation arises for the Boltzmann entropy.
However, for a reason that is puzzling, the calculation in RefHowever, the thermodynamic consistency should hold for all
[1] is performed in one dimension in a rather specializedorders of approximation or, better still, without any approxi-
manner for a flow problem that appears in all the aspects teation, but Grad’s moment method does not yield thermo-
dynamically consistent evolution equations if no further ap-
proximation is made to them. Therefore, if one is looking for
*Also at School of Physics, Korea Institute for Advanced Study,a thermodynamically consistent method for a macroscopic
Seoul, Korea. flow problem, there is little incentive to pursue the Grad
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moment method. Nevertheless, in REL] the aforemen- m p mP.
tioned tenet of thermodynamic consistency is disregarded ST T(%—l), ,quZTWZ,
and the Grad method is pursued with some claims made with sl \N¥g nkgT

regards to the nonlinear longitudinal viscosity associated

with the flow considered. Hence we would like to examine . m [ Py _ mPy,
the evolution equations used in RgL] by making calcula- Myy= 2kgT | nkgT —1) my= nk2T2’
tions for a unidirectional flow, which, careful examination of B
the flow configuration used in Reffl] indicates, is equiva- Here P, and so on are the Cartesian components of the
lent to the flow configuration used in their work, and inves-giress tensap kg denotes the Boltzmann constant, anthe
tigate under what conditions their results can be recoveregdpgo|yte temperature. For notational clarity the particle ve-
and whether they are valid. In this paper we specifically conyqiy ¢ is changed t in this paper. The rest of the notation
sider the stress tensor evolution equation for a unidirectiongk the same as in RefL]. The pressure is defined, as is usual
flow parallel to thex axis in a square channel. The flow is j, the kinetic theory for dilute gases, by the relatipn

assumed to be symmetric with regard to thendz direc-  _ 1yp The symbol Tr is the conventional notation that we
tions of the coordinate system. In REL] the assumption of usually use for trace.

vanishing transversal velocity gradients was used. In this 1nq gistribution function obeys the Boltzmann equation
work we remove the assumption to make our results les§qaq in Ref[1]
restricted.

In Sec. Il we derive the stress tensor evolution equation in
generality and then therefrom the steady state equations for
various stress tensor components for the flow mentioned. It

is assumed that the stress tensor has a vanishing spatial dgnich is a three-dimensional kinetic equation. Ha¢&,f) is
rivative, as assumed in RéfL]. With so-derived steady-state the Boltzmann collision term, which is defined for three-
evolution equations, it is then possible to calculate nonlineagimensional collision processes of rigid spheres. Since we do
viscosities of various kinds. In Sec. Ill, the discussion andyot need the explicit form for this collision integral in this
concluding remarks are given, where connection with thebaper, the reader is referred to the literat{Be7—10 and
results of Uribe and Garcia-ColilUGC) will also be dis- Ref. [1] for its definition.
cussed. Since the Eulerian picture is taken for hydrodynamic de-
scription of flow and the kinetic theory description should be
in accord with the Eulerian picture, in kinetic theory the
statistical mechanical averages of microscopic variables,
A. Distribution function which are identified with hydrodynamic variables, are calcu-
lated in a coordinate system moving at the fluid velocity
This general viewpoint in kinetic theory is effectively imple-
mented by introducing the peculiar veloci introduced
earlier. Once such a peculiar velocity is introduced and the
U= Uy, Uy ,U,) = (Uy,0,0). (1) ~ momentum space is transform_ed to th_e moving frame,.the
nature of flow in the substance in question does not manifest

) itself in the kinetic theory calculations where the main aim is
Here we remark that the neglect of transversal velocity com, gerive the statistical mechanical formulas for material
ponents is an approximation even for a channel flow fromy,nctions, such as viscosity, thermal conductivity, and diffu-
the standpoint of fluid dynamics. For this particular flow gjon coefficients, and calculate them with a suitable intermo-
Uribe and Garcia-Coliri1] take the distribution function in ecyiar potential model. To implement this program it is just
the form corresponding to the ten-moment approximation of,ecessary to derive evolution equations in the Eulerian pic-
Grad ture for macroscopic variables involved. The important point
to remember then is that the transport coefficients are calcu-
f(v,r,t)=fo(1+8), (2) lated in the frame of reference moving at the fluid velocity,
that is, in terms of the peculiar velocity introduced earlier,
because the Boltzmann collision integral and related colli-
where sion bracket integrals are transformed to the peculiar velocity
frame [8—10] with no effect on the transport coefficients,
when they are calculated in kinetic theory of material func-
+ pxy(Cxoy+Cyv,) tions.
Therefore, for the purpose of our calculation here it is

4

%Jrv-vr)f(v,r,t):\](f,f), (5)

Il. STRESS TENSOR EVOLUTION EQUATION

Because the flow is assumed to be unidirectional inxthe
direction and without the transversal velocity components
the mean velocity of the fluid has thex component only

kgT
&= Mxx( Ci_ W

2kgT sufficient and convenient to put the Grad expansion for dis-
+,uyy( v§+v§—— + py Ly, (3)  tribution function(2) in a more general form
. . . . f(v,r,t)=f 1+£mCC:H (6)
with the definitionsC=v—u for the peculiar velocity and Y 0 2p '
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whereB=1/kgT, andlIl is the excess stress tensor, which in Here various symbols are defined belaf\is the unit second
the notation used in Refl] is defined by rank tensor, the symb@A]® stands for the traceless sym-
metric part of tensoA, that is,

1% ny I1,, Mxx Mxy Mxz 1 1
M= Oy Iy Iy, | =2p(mB) Y myx Myy Hyz|. [A](2)=§(A+At)—§5TrA,

1T, sz I1,, Mzx HMzy Mzz

@ and other symbols are
The peculiar velocity in the expression bfs defined with :f :f
respect to the flow defined in E¢Ll). Before proceeding to ¥ dvmCCCr(v.r,t) dCmCCCH(C.r.b),
the derivation of the stress tensor evolution equation, it is (12
helpful to observe the following. 8
,u=4—Op<A([mCC](2)):A([mCC](Z)))C, (13

B. Space dependence afy,

The flow velocity is a macroscopic field variable obeying 4
hydrodynamic (field) equations and satisfying the macro- wy=1.5736, w1=-,=S. (14)
scopic initial and boundary conditions. If the flow velocity is
given by Eq.(1) and is steady, as is assumed in R&f, then  various symbols in these expressions are defined as b&8ow:
the steady-state equation of continuity is given by is defined by the Boltzmann collision bracket integral of a
V., (pu,) =0, ®) contracted rank-6 tensor

2
wherep is the mass density of the gas aWg=d/dx. This S= '8—2<A([mCC](2)):A([mC* C*]@.[mC3C3 1)),
equation means that 4p s

pU=M, ©) with the subscript 2 referring to the second patrticle, the as-
terisk denoting the postcollision value. The following abbre-

whereM is independent ok and time, but may depend on jations are, and will be, used for the tensors involved:
coordinatesy and z, since the flow is only unidirectional.

Unless the gas molecules are confined to move on a line @ 1 %~ 1(2) %~k 1(2) @)

parallel to thex axis in the phase space, will generally ~ A(IMCCI*)= Z([mC C* "+ [mC; C; '~ [mCC]

depend ory andzin the case of even the unidirectional flow

considered. Sinc¥,u, appears in the stress tensor compo- ~[mC,C,]®), (16)

nent evolution equations as will be shown, the stress tensor L

components will also depend gnand z in addition to x. _ * *

Therefore, it is clear tha? ,u,#0 andV ,u,#0 for the flow A(MCC)= 7 (MCTCT+mC; C; ~mCC—mC,Cy),

problem under consideration. In R¢l] the transversal ve- 17

locity gradients are thought to be equal to zero. On the basis

of the consideration given above, we consider it an assump-A([mC* C* @[mC3 C3 @)= ([mC*C* ¥ mC3 C5 1@

tion and will remove it; thusv,u,#0 andV,u,#0 in our

investigation presented belows./ ~[mCCIP[mMC,C,]®).
(18)

C. Stress tensor evolution equation The dot () and double dot;) mean the scalar product of

On use of the Boltzmann equation, the Grad expan&pn vectors or single contraction of tensors and double contrac-
for the problem in hand, which is the same as the expansiotion of tensors, respectively. Thus, for example,

in Eq. (2), and the definition of the stress tensor
A([mc*c*]®).[mc5C51?)

P=f dvaCf(v,r,t)=f dCmCCf(C,r,t), (10 =([mC*C*](2)-[mC’Z‘C’Z‘](Z)—[mCC](Z)-[mCZCZ](Z)).

) , ) The angular bracketéA). with the subscriptc denote the
we obtain the general form of evolution equation for theclision integral defined by

stress tensor

2 o
IpP <A)C=f va dvzjo d(pfo db bg, fo(v,r)fo(va,rA.
Ez—Vr-(¢+uP)—P‘Vru—(Vru)“P—,ul'[
This collision integral becomes that appearing in &) in
— w,[IT-T1]® — w(TT:11) &. (1)  Ref.[1], if a rigid sphere model is assumed for the interac-

031202-3



BYUNG CHAN EU PHYSICAL REVIEW E 65 031202

tion potential. Their collision integral is clearly for three- nates and afterward transform the equations to other coordi-

dimensional collisions of particles. This confirms that thenate systems, if necessary; E@1) holds in any flow

Boltzmann equation considered in Réfl] is for three- configuration, including the one considered in Héf.

dimensional motions of particles, as pointed out earlier. In the flow configuration considered in R¢L] and in the
With regard to the collision bracket integrals appearing inGrad approximation2), it is found that¢=0 identically.

Egs. (13 and (15 we emphasize that they are evaluated inTherefore, in the approximation neglecting the derivative of

the moving coordinate system relative to the fluid velocity,the stress tensor, as is assumed in REf. the steady state

namely, in terms of the peculiar velociti€ andC, in the  stress evolution equation is generally given by

collision volume moving withu. Such mode of calculation is

conventionally used in the kinetic theory of matter; see, for 2 2

example, Refd.8—10] for evaluation of the collision bracket I+ 0o T TP+ IV - u+ 211 V,u)®

integrals. Furthermore, collisions of monatomic gas mol- 2

ecules in such a moving coordinate system is independent of + 5(5'”1_[ -Viut o I1:1

the nature of flow in the Boltzmann kinetic theory. There-

fore, the flow does not affect the outcome of collisions of @ 5

particles and thus the values of the collision bracket inte- =—2p[V,ul*¥ - §péVr-u. (22)

grals; this means that the values of the transport coefficients

remain independent of the nature of flow. This is quite rea- ) ) -

sonable, since flow should not affect the material functiondVe emphasize that this equation is good for any flow con-

of a substance. When taken in components for the flow unddfguration and for any interaction potential model.

consideration, the quantities in Eq4.6) and (17) can be ~ APPlying the assumed cylindrical symmetry, which also

shown to correspond to the collision integrals in Héf. impliesII,,=1Il,y, and condition(1), with definitions of the
The calculation of the dissipation terms in the evolutionSymbols

equation(11) presented earlier requires an explanation, espe-

cially, in view of the calculation made for a special flow Y=Valy,  Vyx=VylUy, (23

configuration performed in Refl]. If the Grad expansion

(6) is inserted into the Boltzmann collision integral, the dis-

sipation term in the evolution equation is generally given byand eliminating thew, IT:IT term between thexx and yy
the formula components of Eq(22), we obtain the set of equations for

Iy, 11y, andlIly, for the flow problem under consideration

f dvmCCJ(f,f)=M:I1+S::.I111, (19 . g

BT IV RY 0
whereM is a tensor of rank 4, an8 a tensor of rank 6, 37 37 Iy
respectively, defined by the collision integrals 1 (a+27) I,y | + w,N(IT)
— E 'yyx ,U, '}’x ')’yx H
yz
M=— 2%<A(mccm<[mcc:]<2>>>c, (20) 0 0

Bt Yy

2
S=- %(A(mCC)A([mC* C*1@[mC3C31®))..
p

II

X ny =P y (24)
(21) I
The symbol(::) denotes quadruple contraction of the ten-
sors. These tensors may be expanded into isotropic tensor
[3] of rank 4 and rank 6, respectively. The calculations in-Vhere
volved with such expansions are tedious and time consum-
ing, but straightforward and within the limit of practicability. -1 2 2 7]
Calculation in fact can be programmed into a computer code, EHxx §ny §Hyz
and it can be shown that they give rise to the last three terms 1
multiplied by scalar coefficients as given in Ed1). Al- _ - -
though the calculation of the numerical coefficients in Eq. N(ID= 0 Z(HXX+ Iy2) 1
(14) requires the help of a computer, the deduction oflthe 1 1
dependence of the terms in fact is pretty straightforward. In — 51y, I,y - =
view of this simple result it is puzzling why the authors of L 2 2
Ref. [1] chose to employ a specidl.e., one-dimensional
flow configuration and carry out the calculation component
by component, when one could perform calculation in a genWith further conditionsV,u,=V,u,=0 as is assumed in
eral manner in any flow configuration in Cartesian coordi-Ref.[1], this set may be written as

(25
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iy My Vx i 7 8 -
4 7o\ ptzv  3Y 0
Iy [+ woLoN(ID)| Ty | =— 3P mt §’)’x) 0, 3™ 3
II II L=
yz yz 26 5 Yyx (mt+2y) Yyx
B 0 0 Mt Yy
where - -
3(put2yy) _ 8¥yx 87§x
B D, D, D,
(MZW) 0 0 | 3w 3tTn GBut v
L= 3 B 2D, D, D,
0 (n+2vy) 0 1
0 0 (utyo 0 0 T
27) L M Yx .
(29)
This set of Eqs(26) is comparable to the equations obtainedWith the definitions
by Uribe and Garcia-Colin for the components of the stress D =32+ 13w ve+ 42 + 14~2
tensor in Ref[1]. The following comment is useful for un- 17 ok HYxT %Y yx Yxo (30

derstanding the significance of various terms in E&4) and

(26): If the channel is infinitely long, the flow velocity and

other flow variables are translationally invariant along xhe

axis. This implies that, in particulary,=V,u,=0. For a
channel of a finite lengthy,# 0 of course. But in this latter
case, neither are the transversal velocity compongnend

u, equal to zero. Consequently, the flow problem become

D,=3u3+ 162y + 27w ys + 1ays + Ayl u+ 45, .

Equation(28) is not solvable in a simple closed form, but
may be iteratively solved, by treating, as the expansion
parameter, just to gain useful insights into the stress tensor
gomponents in the case of the magnitudewgfis small. (It

much more complicated and some of the conclusions drawf@" be shown thab, is proportional toNi,(s>0), where

on the basis of Eq26) or Eq.(24) become invalidated. Nkn is the Knudsen number, which is much smaller than
Equation (26) gives rise to the conclusion thadi,,=0  Uunity in the case of gases at a normal sfate. N

and 1,,=0, implying particularly that not only the shear 10 the lowest order, neglecting the terms containing

viscosity is impossible to define in this model for the rheo-We obtain from Eq(28)

logical constitutive equations, but also there is no shear

stress in the fluid. We remark that the conditioNgu, I, f)/x

=V,u,=0 assumed for the set of Eq®4) are responsible Mol —pL 3 31)
for the vanishindl,, andIl,,, but they are not appropriate xy| = 7P Yyx

for the unidirectional flow under consideration. We also re- I1,, 0

mark that in one-dimensional shock wave study these condi-
tions are generally used in the literature as an approximatioffg this order of approximation, we therefore find the three
in order to make the fluid dynamic equations one dimenstress tensor components in the forms

sional and thus as simple as possible, but they are not applied
in determining the material functions of the gas used in such

P 2
a shock wave study. Viscometry is usually not performed == D_1[4('“+27x) Y~ 8%y, (32
under the conditions thaV,u,=V,u,=0, or equivalent
conditions, because it is impossible to measure a shear vis- 3p
cosity without shearing the fluid; for example, see Réd] Iyy=— D_l(:‘*+37x) Yyx: (33)
for some discussions on measuring viscosity.
Multiplying the inverse of the matrix on the left, we ob- I1,,=0. (34)

tain from Eq.(24)
The presence of, in these equations for the stress compo-
nents is easy to understand because the unidirectional flow
4 creates a velocitysheay gradient in the transversal direction

I,y 3% Il owing to the flow stagnatingor sticking at the boundaries,

Iy | =—-pL —w,LN(ID)| Ly [, (28 as is well known. Since,,=V u,=0 in Ref.[1], it follows

I Yyx N I1,,=0, yielding the conclusion that the shear viscosity is
v 0 yz not defined, but the shear viscosity of the gas is well defined

for the flow configuration. Any rheological constitutive equa-
tion that suggests an undefined shear viscosity while there is
where the matrix is given by a longitudinal viscosity should be a suspect, becayse0 if
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the channel is infinitely long, as mentioned earlier, and con- 3p

sequently I1,,=1I1,,=1I1,,=0. This conclusion clearly is 1s=p- (LF37d)- (42

contrary to experiment and the nature of viscous flow. In Ref. !

[1] it is claimed to be a novelty to viscous phenomena.  For the flow considered in Reffl] 75 is not defined because
These results in Eq932) and (33) suggest that if the of the conditionsV ,u,=V,u,=0. In any case, in Re{1]

longitudinal viscosity is defined by the relation the normal stress differences are not considered. These for-
Moo= — mulas also give different viscosity values depending on the
o T MY sign of y,, although they are all even with respectyg, .
then the nonlinear longitudinal viscosity is given by the for- The odd poweredy, dependence of the viscosity is also
mula present in the UGC result. The odd powergddependence
is suggested as the saving grace of their result by Uribe and
4p yf,x Garcia-Colin, but it must be recognized that such a depen-
Yl :D_l (t2y0)— 8? : 39  dence ony, produces two different sets of nonlinear material

functions that are different for the compression and decom-
In rheology it is the usual practice to define normal strespression of the gas. This is a peculiar feature of their result;
differences and the corresponding normal stress differencé in fact should be regarded as a defect of the theory or at
coefficients. There are two normal stress differences, primarieast as an indicator that there is something strange in the
and secondary. According to the convention used in rheologgonstitutive model for the stress tensor components. The
[11,12, the primary normal stress difference is defined forsame feature is also present in the papers by SgAtand

the flow under consideration by the difference Karlin et al. [5], although the methods used are different.
Since the latter authors use a unidirectional flow, which does
Ny =1~ Iyy, (36) not depend oty andz, the underlying cause for the similar

. . i results probably is the same as for Rdfl, namely, a unidi-

whereas the secondary normal stress difference is defined t?(gctional flow in whichu, is a function ofx only. In any
N,=1T,,—1II,,. (37) case, since the aim of discussion in this paper is not in the

e papers of Santos and Karlet al, we do not dwell on their

By the symmetry assumed for the flow the secondary normdiesults in this work.

stress difference is equal to zero because The present lowest-order iterative resul82) and (32)
suggests

I, =I,,.
I——p, ny—>0 as |7x|_>o°v

This also implies that

although the approach to the limits has two different paths
= — 211y, depending on the sign of, .
. . . In the large|y,| limit the lowest-order iterative solution
as was observed by Uribe and Garcia-Colin. Consequent%resented above is inadequate, of course, and one must nu-

the primary normal stress difference is given by merically solve the equations in E(8). It is worth noting
3 that in the case of an infinitely long channel, the flow is
leznxx- (38)  translationally invariant as noted earlier. This means that
is independent ok, although it depends oy andz. In this

. : .. case, we have,=0 and the nonlinear viscosity depends on
In rheology the primary normal stress difference coeff|C|ent,[he shear rate., only. For this flow the longitudinal viscos-
yx :

7 Is defined by the relation ity is not defined, but the approximate stress components in
N,=— 2 39 Egs. (32) and(14) predict the nonlinear shear viscosity and
1 7]X'yyx' ( ) . .. .
the primary normal stress coefficients in the forms

Therefore, to the order of approximation id, given in Eq.

(32), the primary normal stress difference coefficient is given _— 12pp 43
by " 3utra,
3 yz
nxz——p ap2 gl -1]]. (40) ~ 3pu
2D, Y2, Y2, Ns=5 2 4.2 (44)
y Y 3u +47yx

Since the shear viscosity is commonly defined by the relation . . .
y y y both of which vanish ay,,|— . However, it must be noted

T=— 7s¥yx (41  thatIl,— —3pu whereadl, —0 as|yy,|—=. In this ap-
proximation the behavior of the shear stress is unphysical in
in the tradition of Newton, the nonlinear shear viscosity forthe high shear limit, because it cannot vanish in such a limit.
the approximation used fdid,, in Eq. (33) is given by the It seems to suggest that the underlying stress evolution equa-
formula tion, namely, the constitutive equation, is inadequate.
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The fact thatll,,= 0 implies that the fluid does not rotate (p;i ,ri)—the u space of particle—wherep;=mvy; andr; is
within the square cross section of the duct, as it should nofhe position vector of théth molecule ofN molecules con-
owing to the symmetry assumed. This result is physicallytained in volumev
reasonable. However, in the higher-order approximation
IT,,# 0, which means that there can arise secondary flows in
the duct, and such secondary flows probably occur at the
corners of the square cross section. The results obtained by
Uribe and Garcia-Colin in Re[l] are at variance with the and if the mean hydrodynamic Variab}ér’t) Corresponding

results deduced from the evolution equati¢®8), which are  to dynamical variable,(p; ,r;) is defined by
general for the flow configuration considered.

It must be emphasized thht,,# 0 in general in contrast . N
to the conclusion of Refl1] thatIl,,=0, which is indeed ~A(r,t)=V Izl dp fvdriAi(pi I S(ri—n)Fi(p;,rit).
strange for a duct flow because it does not take the viscous (46)
effect into account and consequently contradicts the Poi-
seuille flow profile that is well known in hydrodynamics and The singlet distribution functions;(p; ,r; ,t) are normalized
used for measuring shear viscosity. This variance arises froms follows:
their incorrect treatment of the stress evolution equation by
settingV,u,=V,u,=0 from the outset.

N
i i) => JF;,F (45)
3t+vi'¢9ri Fi(piuri:t)_j:1 (Fi.Fj,

f dp; fvdriFi(pi I H=1 (47)

I1l. DISCUSSION AND CONCLUDING REMARKS
With Eqgs.(45)—(47) it is possible to obtain exactly the same

With regard to the relation of the dimensionalities of the hydrodynamic equations as with the Boltzmann equation
kinetic equation and a flow problerti.e., hydrodynamic but the aforementioned confusion regarding the configura-
equationy we make the following general remark, not nec-tion spaces of the. space and the hydrodynamic variables
essarily confined to Refl], on the use of the Boltzmann can be avoided therewith. It clearly shows that the kinetic
equation in the literature. It is general practice in the diluteequation is always three dimensional in the configuration
gas kinetic theory2,8,10 that the configurational part of the part of the phasg space regardless of the dimensionality of
phase spacenfv,r), where the Boltzmann equation lives, is the hydrodynamic motion because the hydrodynamic vari-
used coincidently with the configuration spacef the hy-  ables are defined in a coarser scale in the configuration space
drodynamic equations. In other words, the position variable than the molecular variables defined in the fine-grained
in the Boltzmann equation has the same notation and thus th#hase spacé.e., u space and are mean values exhibited by
same mathematical meaning as the position varialilethe @ group of molecules contained in an elementary volume of
macroscopic equation&.g., the moment equations or the the hydrodynamic configuration space. We note that the
Navier-Stokes-Fourier equationgerived from the former. mean values for dense correlated particles are in fact defined
However, the two configuration spaces are physically not thén the same mode as in E@t6) in the kinetic theory of dense
same, although they appear to be so at first glance. It must lases and liquid§7,10]. The presumption oV u,=Vu,
recalled that the kinetic theory yields a mathematical model= 0 in Ref.[1] can be deemed to be a result of not distin-
for description of the macroscopic variables of the fluid par-guishing the configuration spaces in kinetic theory of gases
ticle of an elementary volume that contains a large number ognd hydrodynamics.
molecules.(Note that a fluid particle is not the same as a An important general defect of the distribution function in
molecule) Therefore, even if the fluid particle moves one Ed. (2) is that it does not give rise to a continuum hydrody-
dimensionally in its hydrodynamic configuration space, ithamic theory of stress phenomena that is consistent with
does not mean thaihe molecules making up the fluid particle the thermodynamic laws, as previously pointed out by the
and contained in the elementary volume of the hydrodynamipresent authof7]. Therefore, neither can the nonlinear vis-
configuration spacewhich should be larger than the molecu- cosity calculated therewith be expected to be consistent with
lar collision volume and over which the statistical averagingthe thermodynamic laws. It is our experience that when ma-
is performedshould be moving one dimensional§ince the  terial functions are not consistent with the thermodynamic
configuration space of the Boltzmann equation in &jy.is  laws they do not behave properly, at least, in some aspects.
made coincident with the hydrodynamic configuration spacél'herefore, the calculation of the nonlinear longitudinal vis-
as a mathematical shortcut in the conventional treatment gfosity by Uribe and Garcia-Colifl], who ignore the ques-
gas kinetic theory, one might be misled that the Boltzmanriion of thermodynamic consistency, seems to be a throwback
equation should be also one dimensional if the hydrodyio the days when the question of thermodynamic consistency
namic motion is one dimensional. Unfortunately, this mis-of material functions did not draw attention.
leading form is commonly taken for the kinetic equation in ~ To understand the point of E¢24) by using the proce-
gas kinetic theory and also in Réf]. dure taken in Ref[1] we return to Eq(A2) of Ref.[1]. In

This confusing feature of Eq5) can be removed if the the present notation it is given by
phase space and the hydrodynamic configuration space are
clegrly distinguished. This aim can be easily achieved if we j dvm C§v~ Vrf:mf def(vxif.
define the Boltzmann equation in the phase space, say, IX
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For the second line in this equation the distribution functiontion equations for other components of the stress tensor be-
in Egs.(2) and(3) is used. Since the Boltzmann equation is cause of the erroneous assumption onythedz dependence
not one dimensional and neither are particle motions onef u,.

dimensional in view of the distribution function taken in Eq.  In conclusion, in this work we have derived, by using the
(2), nor are the macroscopic variables independeytaofdz, Grad expansion for a unidirectional channel flow at a uni-
it is incorrect to replace- V, on the left withv,d/dx. Letus  form temperature, the stress tensor evolution equation in

calculate the left-hand side in components. We obtain general form. The steady state form of this equation is then
used to derive the constitutive equations for the stress tensor
dvmC2v. V f:f dvmC(o Vot v V. + 0.V f componentﬂ_xx,HXy_, andIl,. The nonlinear viscosity for-
f G-V CvxVst v, Vytu,V) mulas associated with these stress tensor components can be

_ obtained if the nonlinear constitutive equations are solved.
= 2V Qut UxPiod 2PV i Since the velocity gradienf€,u, andV ,u, do not vanish in
+2P, V., u,+2P,V,u,. general in the case of the unidirectional flow considered, the
aforementioned constitutive equations are at variance with
In Eq. (A2) of Ref.[1] Q, should readv,Q, and the lasttwo the corresponding equations obtained in R&f. Becausa,
terms on the right in the equation above are missing becauss assumed to be a function ®fonly in Ref.[1] and this in
itis assumed tha ,u,=V,u,=0. This clearly demonstrates turn gives rise toV u,=V,u,=0, the terms related to the
that thexx component equation used in REf] for the stress  velocity gradientsV u, andV ,u, are unjustifiably absent in
tensor is inappropriate for the problem in question since setthe stress evolution equations derived by Uribe and Garcia-
ting V,u,=0 is inconsistent with the Grad approximation Colin, making them inappropriate for the unidirectional flow.
made for the distribution function, with the equation of con-In any event, the stress evolution Ed1) is not thermody-
tinuity for the flow configuration considered, and with the namically consistent, as was pointed out in the literafidle
stress evolution equations derived fBr,,P,,, and Py, if the Grad approximation for the distribution function is
etc. in Ref.[1]. Note in this regard tha¥,u,=M(y,z)V,v used, and this weakness makes the nonlinear longitudinal
as pointed out earlier, and it implies the stress tensor cawmiscosity computed from the stress evolution equations
depend ony and z. The origin of the absence of the term poorly behaved in some aspects and consequently ill suited
V,u, in some of the evolution equations for the stress comfor flow studies in the nonlinear regime.
ponents in their paper is evidently in the incorrect use of the
k_metlc equation when_the stress evc_)IL_Jtlon equation is de- ACKNOWLEDGMENTS
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