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Nonlinear viscosity derived by means of Grad’s moment method
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In this paper we examine the stress tensor component evolution equations recently derived by Uribe
and Garcia-Colin@Phys. Rev. E60, 4052 ~1999!# for unidirectional flow at uniform temperature under
the assumption/approximation of vanishing transversal velocity gradients. By removing this assumption/
approximation we derive the stress tensor evolution equation from the Boltzmann equation within the frame-
work of the Grad moment expansion for the case of uniform temperature~the same condition as theirs!.
Specializing the evolution equation to the case of steady unidirectional flow in a square channel, we obtain a
set of steady state evolution equations for the components of the stress tensor. Because the transversal velocity
gradients are not assumed to vanish in this paper in contrast to their paper, the present result is more general
than theirs. Its special case corresponding to the one-dimensional flow considered by Uribe and Garcia-Colin
is at variance with theirs because of a missing term in their stress evolution equation for thexy component. The
nonlinear viscosity formulas are also different. A general remark is given with regard to the relation of
dimensionalities of hydrodynamic equations and the kinetic equation underlying the former. They are not
necessarily the same.

DOI: 10.1103/PhysRevE.65.031202 PACS number~s!: 05.60.2k, 51.10.1y, 51.20.1d
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I. INTRODUCTION

In a recent paper@1# @Phys. Rev. E60, 4052 ~1999!#,
henceforth referred to as Ref.@1# in this paper, Uribe and
Garcia-Colin calculate nonlinear viscosity formulas of a
lute monatomic gas that undergoes a unidirectional flow. T
kinetic equation used is the Boltzmann equation and the
tribution function obeying the kinetic equation is assumed
have cylindrical symmetry. The unidirectional flow is para
lel to thex axis of the coordinate system. The assumed
lindrical symmetry, therefore, makes the distribution functi
symmetric with respect to they and z directions. Further-
more, the temperature is assumed to be uniform so that t
is no heat flow. This kind of a flow problem has been stud
in the past in the dilute gas kinetic theory within the fram
work of the Grad moment method@2# and also in the contex
of generalized hydrodynamics@3# for which the dissipation
terms have been in essence calculated to an infinite ord
series of the Knudsen number by means of a cumulant
pansion. This method for the dissipation terms ensures
nonlinear constitutive equations developed to be highly n
linear yet still thermodynamically consistent. In the case
Ref. @1# the Grad moment method is implemented to t
second order with regard to the stress tensor for the diss
tion term, which is, at most, of second order in fluxes in t
case of the Boltzmann equation. This feature, perhaps,
tinguishes it from other works using the conventional Gr
moment method for the problem or a moment method for
Maxwell model@4# or a variation@5# of the moment method
However, for a reason that is puzzling, the calculation in R
@1# is performed in one dimension in a rather specializ
manner for a flow problem that appears in all the aspect
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be a unidirectional flow in a square channel, even though
calculation can be performed in general context and m
general results can be thereby obtained for the stress te
evolution equation with no more theoretical complicati
than what is already incurred in their paper. In this pap
which is specifically concerned with the stress evoluti
equation in Ref.@1#, we derive, within the framework o
Grad’s 13-moment expansion, the stress tensor evolu
equation for a unidirectional channel flow without the a
sumption on the vanishing transverse velocity gradie
made in Ref.@1#. The stress tensor evolution equation o
tained below is, therefore, more general than theirs, and
make some deductions for nonlinear viscosities on the b
of the stress tensor evolution equation derived and comp
the results with those in Ref.@1#.

As is reasonably well understood in the literature@3,6,7#
by now, macroscopic flow problems should be thermod
namically consistent, that is, they have to conform to
requirements of the laws of thermodynamics. Unfortunate
Grad’s moment expansion method is not thermodynamic
consistent as was shown in the literature@7#, unless some
approximations are made to the moment evolution equat
obtained thereby. For example, if a perturbation solut
method is applied to the moment evolution equations
Grad, the thermodynamically consistent Navier-Stok
Fourier theory is recovered at the first order of approxim
tion, as is the case for the first-order Chapman-Ens
solution. At the same order of approximation the local eq
librium Gibbs relation arises for the Boltzmann entrop
However, the thermodynamic consistency should hold for
orders of approximation or, better still, without any appro
mation, but Grad’s moment method does not yield therm
dynamically consistent evolution equations if no further a
proximation is made to them. Therefore, if one is looking f
a thermodynamically consistent method for a macrosco
flow problem, there is little incentive to pursue the Gr

,
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BYUNG CHAN EU PHYSICAL REVIEW E 65 031202
moment method. Nevertheless, in Ref.@1# the aforemen-
tioned tenet of thermodynamic consistency is disregar
and the Grad method is pursued with some claims made
regards to the nonlinear longitudinal viscosity associa
with the flow considered. Hence we would like to exami
the evolution equations used in Ref.@1# by making calcula-
tions for a unidirectional flow, which, careful examination
the flow configuration used in Ref.@1# indicates, is equiva-
lent to the flow configuration used in their work, and inve
tigate under what conditions their results can be recove
and whether they are valid. In this paper we specifically c
sider the stress tensor evolution equation for a unidirectio
flow parallel to thex axis in a square channel. The flow
assumed to be symmetric with regard to they and z direc-
tions of the coordinate system. In Ref.@1# the assumption of
vanishing transversal velocity gradients was used. In
work we remove the assumption to make our results
restricted.

In Sec. II we derive the stress tensor evolution equatio
generality and then therefrom the steady state equations
various stress tensor components for the flow mentione
is assumed that the stress tensor has a vanishing spatia
rivative, as assumed in Ref.@1#. With so-derived steady-stat
evolution equations, it is then possible to calculate nonlin
viscosities of various kinds. In Sec. III, the discussion a
concluding remarks are given, where connection with
results of Uribe and Garcia-Colin~UGC! will also be dis-
cussed.

II. STRESS TENSOR EVOLUTION EQUATION

A. Distribution function

Because the flow is assumed to be unidirectional in thx
direction and without the transversal velocity componen
the mean velocityu of the fluid has thex component only

u5~ux ,uy ,uz!5~ux,0,0!. ~1!

Here we remark that the neglect of transversal velocity co
ponents is an approximation even for a channel flow fr
the standpoint of fluid dynamics. For this particular flo
Uribe and Garcia-Colin@1# take the distribution function in
the form corresponding to the ten-moment approximation
Grad

f ~v,r ,t !5 f 0~11j!, ~2!

where

j5mxxS Cx
22

kBT

m D1mxy~Cxvy1Cxvz!

1myyS vy
21vz

22
2kBT

m D1myzvyvz ~3!

with the definitionsC5v2u for the peculiar velocity and
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mxx5
m

2kBT S Pxx

nkBT
21D , mxy5

mPxy

nkB
2T2

,

myy5
m

2kBT S Pyy

nkBT
21D , myz5

mPyz

nkB
2T2

. ~4!

Here Pxx and so on are the Cartesian components of
stress tensorP,kB denotes the Boltzmann constant, andT the
absolute temperature. For notational clarity the particle
locity c is changed tov in this paper. The rest of the notatio
is the same as in Ref.@1#. The pressure is defined, as is usu
in the kinetic theory for dilute gases, by the relationp
5 1

3 TrP. The symbol Tr is the conventional notation that w
usually use for trace.

The distribution function obeys the Boltzmann equati
used in Ref.@1#

S ]

]t
1v•“ r D f ~v,r ,t !5J~ f , f !, ~5!

which is a three-dimensional kinetic equation. HereJ( f , f ) is
the Boltzmann collision term, which is defined for thre
dimensional collision processes of rigid spheres. Since we
not need the explicit form for this collision integral in th
paper, the reader is referred to the literature@3,7–10# and
Ref. @1# for its definition.

Since the Eulerian picture is taken for hydrodynamic d
scription of flow and the kinetic theory description should
in accord with the Eulerian picture, in kinetic theory th
statistical mechanical averages of microscopic variab
which are identified with hydrodynamic variables, are calc
lated in a coordinate system moving at the fluid velocityu.
This general viewpoint in kinetic theory is effectively imple
mented by introducing the peculiar velocityC introduced
earlier. Once such a peculiar velocity is introduced and
momentum space is transformed to the moving frame,
nature of flow in the substance in question does not mani
itself in the kinetic theory calculations where the main aim
to derive the statistical mechanical formulas for mater
functions, such as viscosity, thermal conductivity, and dif
sion coefficients, and calculate them with a suitable interm
lecular potential model. To implement this program it is ju
necessary to derive evolution equations in the Eulerian
ture for macroscopic variables involved. The important po
to remember then is that the transport coefficients are ca
lated in the frame of reference moving at the fluid veloci
that is, in terms of the peculiar velocity introduced earli
because the Boltzmann collision integral and related co
sion bracket integrals are transformed to the peculiar velo
frame @8–10# with no effect on the transport coefficient
when they are calculated in kinetic theory of material fun
tions.

Therefore, for the purpose of our calculation here it
sufficient and convenient to put the Grad expansion for d
tribution function~2! in a more general form

f ~v,r ,t !5 f 0S 11
b

2p
mCC:P D , ~6!
2-2
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NONLINEAR VISCOSITY DERIVED BY MEANS OF . . . PHYSICAL REVIEW E 65 031202
whereb51/kBT, andP is the excess stress tensor, which
the notation used in Ref.@1# is defined by

P5F Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

G[2p~mb!21F mxx mxy mxz

myx myy myz

mzx mzy mzz

G .

~7!

The peculiar velocity in the expression off is defined with
respect to the flow defined in Eq.~1!. Before proceeding to
the derivation of the stress tensor evolution equation, i
helpful to observe the following.

B. Space dependence ofux

The flow velocity is a macroscopic field variable obeyi
hydrodynamic~field! equations and satisfying the macr
scopic initial and boundary conditions. If the flow velocity
given by Eq.~1! and is steady, as is assumed in Ref.@1#, then
the steady-state equation of continuity is given by

“x~rux!50, ~8!

wherer is the mass density of the gas and“x5]/]x. This
equation means that

rux5M , ~9!

whereM is independent ofx and time, but may depend o
coordinatesy and z, since the flow is only unidirectional
Unless the gas molecules are confined to move on a
parallel to thex axis in the phase space,ux will generally
depend ony andz in the case of even the unidirectional flo
considered. Since“xux appears in the stress tensor comp
nent evolution equations as will be shown, the stress ten
components will also depend ony and z in addition to x.
Therefore, it is clear that“yuxÞ0 and“zuxÞ0 for the flow
problem under consideration. In Ref.@1# the transversal ve
locity gradients are thought to be equal to zero. On the b
of the consideration given above, we consider it an assu
tion and will remove it; thus“yuxÞ0 and“zuxÞ0 in our
investigation presented below.

C. Stress tensor evolution equation

On use of the Boltzmann equation, the Grad expansion~6!
for the problem in hand, which is the same as the expan
in Eq. ~2!, and the definition of the stress tensor

P5E dvmCCf ~v,r ,t !5E dCmCCf ~C,r ,t !, ~10!

we obtain the general form of evolution equation for t
stress tensor

]P

]t
52“ r•~c1uP!2P•“ ru2~“ ru! t

•P2mP

2v2@P•P# (2)2v1~P:P!d. ~11!
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Here various symbols are defined below:d is the unit second
rank tensor, the symbol@A# (2) stands for the traceless sym
metric part of tensorA, that is,

@A# (2)5
1

2
~A1At!2

1

3
dTrA,

and other symbols are

c5E dvmCCCf ~v,r ,t !5E dCmCCCf ~C,r ,t !,

~12!

m5
b

40p
^D~@mCC# (2)!:D~@mCC# (2)!&c , ~13!

v251.5736S, v152
4

47
S. ~14!

Various symbols in these expressions are defined as beloS
is defined by the Boltzmann collision bracket integral of
contracted rank-6 tensor

S5
b2

4p2
^D~@mCC# (2)!:D~@mC* C* # (2)

•@mC2* C2* # (2)!&c

~15!

with the subscript 2 referring to the second particle, the
terisk denoting the postcollision value. The following abbr
viations are, and will be, used for the tensors involved:

D~@mCC# (2)!5
1

4
~@mC* C* # (2)1@mC2* C2* # (2)2@mCC# (2)

2@mC2C2# (2)!, ~16!

D~mCC!5
1

4
~mC* C* 1mC2* C2* 2mCC2mC2C2!,

~17!

D~@mC* C* # (2)@mC2* C2* # (2)!5~@mC* C* # (2)@mC2* C2* # (2)

2@mCC# (2)@mC2C2# (2)!.

~18!

The dot (•) and double dot~:! mean the scalar product o
vectors or single contraction of tensors and double cont
tion of tensors, respectively. Thus, for example,

D~@mC* C* # (2)
•@mC2* C2* # (2)!

5~@mC* C* # (2)
•@mC2* C2* # (2)2@mCC# (2)

•@mC2C2# (2)!.

The angular bracketŝA&c with the subscriptc denote the
collision integral defined by

^A&c5E dvE dv2E
0

2p

dwE
0

`

db bg12 f 0~v,r ! f 0~v2 ,r !A.

This collision integral becomes that appearing in Eq.~B1! in
Ref. @1#, if a rigid sphere model is assumed for the intera
2-3
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BYUNG CHAN EU PHYSICAL REVIEW E 65 031202
tion potential. Their collision integral is clearly for three
dimensional collisions of particles. This confirms that t
Boltzmann equation considered in Ref.@1# is for three-
dimensional motions of particles, as pointed out earlier.

With regard to the collision bracket integrals appearing
Eqs. ~13! and ~15! we emphasize that they are evaluated
the moving coordinate system relative to the fluid veloc
namely, in terms of the peculiar velocitiesC and C2 in the
collision volume moving withu. Such mode of calculation is
conventionally used in the kinetic theory of matter; see,
example, Refs.@8–10# for evaluation of the collision bracke
integrals. Furthermore, collisions of monatomic gas m
ecules in such a moving coordinate system is independe
the nature of flow in the Boltzmann kinetic theory. Ther
fore, the flow does not affect the outcome of collisions
particles and thus the values of the collision bracket in
grals; this means that the values of the transport coeffici
remain independent of the nature of flow. This is quite r
sonable, since flow should not affect the material functio
of a substance. When taken in components for the flow un
consideration, the quantities in Eqs.~16! and ~17! can be
shown to correspond to the collision integrals in Ref.@1#.

The calculation of the dissipation terms in the evoluti
equation~11! presented earlier requires an explanation, es
cially, in view of the calculation made for a special flo
configuration performed in Ref.@1#. If the Grad expansion
~6! is inserted into the Boltzmann collision integral, the d
sipation term in the evolution equation is generally given
the formula

E dvmCCJ~ f , f !5M :P1S::PP, ~19!

where M is a tensor of rank 4, andS a tensor of rank 6,
respectively, defined by the collision integrals

M52
b

2p
^D~mCC!D~@mCC# (2)!&c , ~20!

S52
b2

4p2
^D~mCC!D~@mC* C* # (2)@mC2* C2* # (2)!&c .

~21!

The symbol(::) denotes quadruple contraction of the te
sors. These tensors may be expanded into isotropic ten
@3# of rank 4 and rank 6, respectively. The calculations
volved with such expansions are tedious and time cons
ing, but straightforward and within the limit of practicability
Calculation in fact can be programmed into a computer co
and it can be shown that they give rise to the last three te
multiplied by scalar coefficients as given in Eq.~11!. Al-
though the calculation of the numerical coefficients in E
~14! requires the help of a computer, the deduction of theP
dependence of the terms in fact is pretty straightforward
view of this simple result it is puzzling why the authors
Ref. @1# chose to employ a special~i.e., one-dimensional!
flow configuration and carry out the calculation compon
by component, when one could perform calculation in a g
eral manner in any flow configuration in Cartesian coor
03120
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nates and afterward transform the equations to other coo
nate systems, if necessary; Eq.~11! holds in any flow
configuration, including the one considered in Ref.@1#.

In the flow configuration considered in Ref.@1# and in the
Grad approximation~2!, it is found thatc50 identically.
Therefore, in the approximation neglecting the derivative
the stress tensor, as is assumed in Ref.@1#, the steady state
stress evolution equation is generally given by

mP1v2@P•P# (2)1P“ r•u12@P•“ ru# (2)

1dS 2

3
TrP•“ ru1v1P:P D

522p@“ ru# (2)2
5

3
pd“ r•u. ~22!

We emphasize that this equation is good for any flow c
figuration and for any interaction potential model.

Applying the assumed cylindrical symmetry, which al
impliesPxz5Pxy , and condition~1!, with definitions of the
symbols

gx5“xux , gyx5“yux , ~23!

and eliminating thev1P:P term between thexx and yy
components of Eq.~22!, we obtain the set of equations fo
Pxx ,Pxy , andPyz for the flow problem under consideratio

F m1
7

3
gx

8

3
gyx 0

2
1

2
gyx ~m12gx! gyx

0 0 m1gx

G F Pxx

Pxy

Pyz

G1v2N~P!

3F Pxx

Pxy

Pyz

G52pF 4

3
gx

gyx

0

G , ~24!

where

N~P!5F 1

2
Pxx

2

3
Pxy

2

3
Pyz

0
1

2
~Pxx1Pyz!

1

2
Pxy

2
1

2
Pyz Pxy 2

1

2
Pxx

G .

~25!

With further conditions“yux5“zux50 as is assumed in
Ref. @1#, this set may be written as
2-4
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NONLINEAR VISCOSITY DERIVED BY MEANS OF . . . PHYSICAL REVIEW E 65 031202
F Pxx

Pxy

Pyz

G1v2L0N~P!F Pxx

Pxy

Pyz

G52
4

3
pS m1

7

3
gxD 21F gx

0

0
G ,

~26!

where

L05F S m1
7

3
gxD 21

0 0

0 ~m12gx!
21 0

0 0 ~m1gx!
21

G .

~27!

This set of Eqs.~26! is comparable to the equations obtain
by Uribe and Garcia-Colin for the components of the str
tensor in Ref.@1#. The following comment is useful for un
derstanding the significance of various terms in Eqs.~24! and
~26!: If the channel is infinitely long, the flow velocity an
other flow variables are translationally invariant along thx
axis. This implies that, in particular,gx5¹xux50. For a
channel of a finite length,gxÞ0 of course. But in this latter
case, neither are the transversal velocity componentsuy and
uz equal to zero. Consequently, the flow problem becom
much more complicated and some of the conclusions dr
on the basis of Eq.~26! or Eq. ~24! become invalidated.

Equation ~26! gives rise to the conclusion thatPxy50
and Pyz50, implying particularly that not only the shea
viscosity is impossible to define in this model for the rhe
logical constitutive equations, but also there is no sh
stress in the fluid. We remark that the conditions“yux
5“zux50 assumed for the set of Eqs.~24! are responsible
for the vanishingPxy andPyz , but they are not appropriat
for the unidirectional flow under consideration. We also
mark that in one-dimensional shock wave study these co
tions are generally used in the literature as an approxima
in order to make the fluid dynamic equations one dim
sional and thus as simple as possible, but they are not ap
in determining the material functions of the gas used in s
a shock wave study. Viscometry is usually not perform
under the conditions that“yux5“zux50, or equivalent
conditions, because it is impossible to measure a shear
cosity without shearing the fluid; for example, see Ref.@11#
for some discussions on measuring viscosity.

Multiplying the inverse of the matrix on the left, we ob
tain from Eq.~24!

F Pxx

Pxy

Pyz

G52pLF 4

3
gx

gyx

0

G2v2LN ~P!F Pxx

Pxy

Pyz

G , ~28!

where the matrixL is given by
03120
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L5F m1
7

3
gx

8

3
gyx 0

2
1

2
gyx ~m12gx! gyx

0 0 m1gx

G 21

5F 3~m12gx!

D1
2

8gyx

D1

8gyx
2

D2

3gyx

2D1

3m17gx

D1
2

~3m17gx!gyx

D2

0 0
1

m1gx

G
~29!

with the definitions

D153m2113mgx14gyx
2 114gx

2 ,
~30!

D253m3116m2gx127mgx
2114gx

314gyx
2 m14gyx

2 gx .

Equation~28! is not solvable in a simple closed form, bu
may be iteratively solved, by treatingv2 as the expansion
parameter, just to gain useful insights into the stress ten
components in the case of the magnitude ofv2 is small.~It
can be shown thatv2 is proportional toNKn

« («.0), where
NKn is the Knudsen number, which is much smaller th
unity in the case of gases at a normal state.!

To the lowest order, neglecting the terms containingv2,
we obtain from Eq.~28!

F Pxx

Pxy

Pyz

G52pLF 4

3
gx

gyx

0

G . ~31!

To this order of approximation, we therefore find the thr
stress tensor components in the forms

Pxx52
p

D1
@4~m12gx!gx28gyx

2 #, ~32!

Pxy52
3p

D1
~m13gx!gyx , ~33!

Pyz50. ~34!

The presence ofgyx in these equations for the stress comp
nents is easy to understand because the unidirectional
creates a velocity~shear! gradient in the transversal directio
owing to the flow stagnating~or sticking! at the boundaries
as is well known. Sincegyx5“yux50 in Ref.@1#, it follows
Pxy50, yielding the conclusion that the shear viscosity
not defined, but the shear viscosity of the gas is well defin
for the flow configuration. Any rheological constitutive equ
tion that suggests an undefined shear viscosity while ther
a longitudinal viscosity should be a suspect, becausegx50 if
2-5
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BYUNG CHAN EU PHYSICAL REVIEW E 65 031202
the channel is infinitely long, as mentioned earlier, and c
sequently Pxx5Pxy5Pyz50. This conclusion clearly is
contrary to experiment and the nature of viscous flow. In R
@1# it is claimed to be a novelty to viscous phenomena.

These results in Eqs.~32! and ~33! suggest that if the
longitudinal viscosity is defined by the relation

Pxx52h lgx ,

then the nonlinear longitudinal viscosity is given by the fo
mula

h l5
4p

D1
F ~m12gx!28

gyx
2

gx
G . ~35!

In rheology it is the usual practice to define normal str
differences and the corresponding normal stress differe
coefficients. There are two normal stress differences, prim
and secondary. According to the convention used in rheol
@11,12#, the primary normal stress difference is defined
the flow under consideration by the difference

N15Pxx2Pyy , ~36!

whereas the secondary normal stress difference is define

N25Pyy2Pzz. ~37!

By the symmetry assumed for the flow the secondary nor
stress difference is equal to zero because

Pyy5Pzz.

This also implies that

Pxx522Pyy ,

as was observed by Uribe and Garcia-Colin. Conseque
the primary normal stress difference is given by

N15
3

2
Pxx . ~38!

In rheology the primary normal stress difference coeffici
hx is defined by the relation

N152hxgyx
2 . ~39!

Therefore, to the order of approximation forPxx given in Eq.
~32!, the primary normal stress difference coefficient is giv
by

hx52
3p

2D1
F4m

gx

gyx
2

18S gx
2

gyx
2

21D G . ~40!

Since the shear viscosity is commonly defined by the rela

Pxy52hsgyx ~41!

in the tradition of Newton, the nonlinear shear viscosity
the approximation used forPxy in Eq. ~33! is given by the
formula
03120
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hs5
3p

D1
~m13gx!. ~42!

For the flow considered in Ref.@1# hs is not defined becaus
of the conditions“yux5“zux50. In any case, in Ref.@1#
the normal stress differences are not considered. These
mulas also give different viscosity values depending on
sign of gx , although they are all even with respect togyx .
The odd poweredgx dependence of the viscosity is als
present in the UGC result. The odd poweredgx dependence
is suggested as the saving grace of their result by Uribe
Garcia-Colin, but it must be recognized that such a dep
dence ongx produces two different sets of nonlinear mater
functions that are different for the compression and deco
pression of the gas. This is a peculiar feature of their res
it in fact should be regarded as a defect of the theory o
least as an indicator that there is something strange in
constitutive model for the stress tensor components.
same feature is also present in the papers by Santos@4# and
Karlin et al. @5#, although the methods used are differe
Since the latter authors use a unidirectional flow, which d
not depend ony andz, the underlying cause for the simila
results probably is the same as for Ref.@1#, namely, a unidi-
rectional flow in whichux is a function ofx only. In any
case, since the aim of discussion in this paper is not in
papers of Santos and Karlinet al., we do not dwell on their
results in this work.

The present lowest-order iterative results~32! and ~32!
suggests

Pxx→2p, Pxy→0 as ugxu→`,

although the approach to the limits has two different pa
depending on the sign ofgx .

In the largeugxu limit the lowest-order iterative solution
presented above is inadequate, of course, and one mus
merically solve the equations in Eq.~28!. It is worth noting
that in the case of an infinitely long channel, the flow
translationally invariant as noted earlier. This means thatux
is independent ofx, although it depends ony and z. In this
case, we havegx50 and the nonlinear viscosity depends
the shear rategyx only. For this flow the longitudinal viscos
ity is not defined, but the approximate stress component
Eqs. ~32! and ~14! predict the nonlinear shear viscosity an
the primary normal stress coefficients in the forms

hx5
12pm

3m214gyx,
2

, ~43!

hs5
3pm

3m214gyx
2

, ~44!

both of which vanish asugyxu→`. However, it must be noted
that Pxx→23pm whereasPxy→0 asugyxu→`. In this ap-
proximation the behavior of the shear stress is unphysica
the high shear limit, because it cannot vanish in such a lim
It seems to suggest that the underlying stress evolution e
tion, namely, the constitutive equation, is inadequate.
2-6
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The fact thatPyz50 implies that the fluid does not rotat
within the square cross section of the duct, as it should
owing to the symmetry assumed. This result is physica
reasonable. However, in the higher-order approximat
PyzÞ0, which means that there can arise secondary flow
the duct, and such secondary flows probably occur at
corners of the square cross section. The results obtaine
Uribe and Garcia-Colin in Ref.@1# are at variance with the
results deduced from the evolution equations~28!, which are
general for the flow configuration considered.

It must be emphasized thatPxyÞ0 in general in contras
to the conclusion of Ref.@1# that Pxy50, which is indeed
strange for a duct flow because it does not take the visc
effect into account and consequently contradicts the P
seuille flow profile that is well known in hydrodynamics an
used for measuring shear viscosity. This variance arises f
their incorrect treatment of the stress evolution equation
setting“yux5“zux50 from the outset.

III. DISCUSSION AND CONCLUDING REMARKS

With regard to the relation of the dimensionalities of t
kinetic equation and a flow problem~i.e., hydrodynamic
equations!, we make the following general remark, not ne
essarily confined to Ref.@1#, on the use of the Boltzman
equation in the literature. It is general practice in the dilu
gas kinetic theory@2,8,10# that the configurational part of th
phase space (mv,r ), where the Boltzmann equation lives,
used coincidently with the configuration spacer of the hy-
drodynamic equations. In other words, the position variabr
in the Boltzmann equation has the same notation and thus
same mathematical meaning as the position variabler in the
macroscopic equations~e.g., the moment equations or th
Navier-Stokes-Fourier equations! derived from the former.
However, the two configuration spaces are physically not
same, although they appear to be so at first glance. It mus
recalled that the kinetic theory yields a mathematical mo
for description of the macroscopic variables of the fluid p
ticle of an elementary volume that contains a large numbe
molecules.~Note that a fluid particle is not the same as
molecule.! Therefore, even if the fluid particle moves on
dimensionally in its hydrodynamic configuration space,
does not mean thatthe molecules making up the fluid partic
and contained in the elementary volume of the hydrodyna
configuration space, which should be larger than the molec
lar collision volume and over which the statistical averag
is performed,should be moving one dimensionally. Since the
configuration space of the Boltzmann equation in Eq.~5! is
made coincident with the hydrodynamic configuration sp
as a mathematical shortcut in the conventional treatmen
gas kinetic theory, one might be misled that the Boltzma
equation should be also one dimensional if the hydro
namic motion is one dimensional. Unfortunately, this m
leading form is commonly taken for the kinetic equation
gas kinetic theory and also in Ref.@1#.

This confusing feature of Eq.~5! can be removed if the
phase space and the hydrodynamic configuration space
clearly distinguished. This aim can be easily achieved if
define the Boltzmann equation in the phase space,
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(pi ,r i)—the m space of particlei—wherepi5mvi andr i is
the position vector of thei th molecule ofN molecules con-
tained in volumeV

S ]

]t
1vi•

]

]r i
DFi~pi ,r i ,t !5(

j 51

N

J~Fi ,F j !, ~45!

and if the mean hydrodynamic variableA(r ,t) corresponding
to dynamical variableAi(pi ,r i) is defined by

A~r ,t !5V21(
i 51

N E dpiE
V
dr iAi~pi ,r i !d~r i2r !Fi~pi ,r i ,t !.

~46!

The singlet distribution functionsFi(pi ,r i ,t) are normalized
as follows:

E dpiE
V
dr iFi~pi ,r i ,t !51. ~47!

With Eqs.~45!–~47! it is possible to obtain exactly the sam
hydrodynamic equations as with the Boltzmann equation~5!,
but the aforementioned confusion regarding the configu
tion spaces of them space and the hydrodynamic variabl
can be avoided therewith. It clearly shows that the kine
equation is always three dimensional in the configurat
part of the phasem space regardless of the dimensionality
the hydrodynamic motion because the hydrodynamic v
ables are defined in a coarser scale in the configuration s
than the molecular variables defined in the fine-grain
phase space~i.e., m space! and are mean values exhibited b
a group of molecules contained in an elementary volume
the hydrodynamic configuration space. We note that
mean values for dense correlated particles are in fact defi
in the same mode as in Eq.~46! in the kinetic theory of dense
gases and liquids@7,10#. The presumption of“yux5“zux
50 in Ref. @1# can be deemed to be a result of not dist
guishing the configuration spaces in kinetic theory of ga
and hydrodynamics.

An important general defect of the distribution function
Eq. ~2! is that it does not give rise to a continuum hydrod
namic theory of stress phenomena that is consistent w
the thermodynamic laws, as previously pointed out by
present author@7#. Therefore, neither can the nonlinear vi
cosity calculated therewith be expected to be consistent w
the thermodynamic laws. It is our experience that when m
terial functions are not consistent with the thermodynam
laws they do not behave properly, at least, in some aspe
Therefore, the calculation of the nonlinear longitudinal v
cosity by Uribe and Garcia-Colin@1#, who ignore the ques-
tion of thermodynamic consistency, seems to be a throwb
to the days when the question of thermodynamic consiste
of material functions did not draw attention.

To understand the point of Eq.~24! by using the proce-
dure taken in Ref.@1# we return to Eq.~A2! of Ref. @1#. In
the present notation it is given by

E dvmCx
2v•“ r f 5mE dvCx

2vx

]

]x
f .
2-7
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For the second line in this equation the distribution funct
in Eqs.~2! and ~3! is used. Since the Boltzmann equation
not one dimensional and neither are particle motions
dimensional in view of the distribution function taken in E
~2!, nor are the macroscopic variables independent ofy andz,
it is incorrect to replacev•“ r on the left withvx]/]x. Let us
calculate the left-hand side in components. We obtain

E dvmCx
2v•“ r f 5E dvmCx

2~vx“x1vy“y1vz“z! f

52“x~Qx1uxPxx!12Pxx“xux

12Pyx“yux12Pzx“zux .

In Eq. ~A2! of Ref. @1# Qx should read“xQx and the last two
terms on the right in the equation above are missing beca
it is assumed that“yux5“zux50. This clearly demonstrate
that thexx component equation used in Ref.@1# for the stress
tensor is inappropriate for the problem in question since
ting “yux50 is inconsistent with the Grad approximatio
made for the distribution function, with the equation of co
tinuity for the flow configuration considered, and with th
stress evolution equations derived forPyy ,Pxy , and Pyz ,
etc. in Ref.@1#. Note in this regard that“xux5M (y,z)“xv
as pointed out earlier, and it implies the stress tensor
depend ony and z. The origin of the absence of the ter
“yux in some of the evolution equations for the stress co
ponents in their paper is evidently in the incorrect use of
kinetic equation when the stress evolution equation is
rived, as we have earlier shown explicitly with Eq.~A2! in
Appendix A of Ref.@1#. For the reason mentioned earlier, t
distribution functionf used is not a function ofx only, if the
flow is unidirectional. The same error persists in the evo
cs

. E

03120
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tion equations for other components of the stress tensor
cause of the erroneous assumption on they andz dependence
of ux .

In conclusion, in this work we have derived, by using t
Grad expansion for a unidirectional channel flow at a u
form temperature, the stress tensor evolution equation
general form. The steady state form of this equation is th
used to derive the constitutive equations for the stress te
componentsPxx ,Pxy , andPyz . The nonlinear viscosity for-
mulas associated with these stress tensor components c
obtained if the nonlinear constitutive equations are solv
Since the velocity gradients“yux and“zux do not vanish in
general in the case of the unidirectional flow considered,
aforementioned constitutive equations are at variance w
the corresponding equations obtained in Ref.@1#. Becauseux
is assumed to be a function ofx only in Ref. @1# and this in
turn gives rise to“yux5“zux50, the terms related to the
velocity gradients“yux and“zux are unjustifiably absent in
the stress evolution equations derived by Uribe and Gar
Colin, making them inappropriate for the unidirectional flo
In any event, the stress evolution Eq.~11! is not thermody-
namically consistent, as was pointed out in the literature@7#,
if the Grad approximation for the distribution function
used, and this weakness makes the nonlinear longitud
viscosity computed from the stress evolution equatio
poorly behaved in some aspects and consequently ill su
for flow studies in the nonlinear regime.
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